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i. When an explosion takes place underground, an intensive disintegration Of the soil, 
known as spalling, takes place in the region of the epicenter of the explosion. Spalling al- 
so occurs in the case of an ejection explosion which precedes the stage of dispersal of the 
soil. 

Spalling disintegration takes place because the compression-stress wave emitted by 
the focus of the explosion interacts with the free surface of the medium; in this interac- 
tion the con~ression wave is converted into a tension wave. 

Soils and rocks have low stability with respect to tension in comparison to their sta- 
bility with respect to compression. For this reason, soil not disintegrated in a compression 
wave which is already attenuated disintegrates easily in a tension wave of the same amplitude. 
It is the tension wave that causes the impressive scale of the spalling phenomenon in under- 
ground explosions. For example, it is shown in [i] that the volume of disintegration in the 
spalling zone may be twice as great as the volume of distintegration near the center of the 
explosion. 

In order to study spalling, we shall consider the rock to bea linearly ideal elastic 
solid, and the concentrated explosion to be a point source which generates a spherically di- 
verging elastic stress wave. This is the way the explosion problem was formulated in [2-4]. 
Onis'ko and Shemyakin [2] obtained and investigated formulas for the displacement band veloc- 
ity of the free surface of an elastic half-space, Gutova and Nikiforovskii [3, 4] obtained 
and partially investigated formulas for the stress in a half-space. 

In the present study, the problem of spalling in an underground explosion is solved for 
elastic solids whose stability with respect to tension is much less than their stability with 
respect to compression and shear. Such materials include, for example, soils and rocks (to 
the extent that they can be regarded as linearly elastic solids). 

The elastic wave occurring when an explosion takes place in an unbounded medium will be 
described by the potential of the field of displacements ~0(R, t) in the form 

A .r i "t ], ~o(R,t)=wjLwo~ -R,'..) t~>o, n>o, (1.l) 

where t is time; to is the characteristic time; R is the distance from the center of the ex- 
plosion; A is a constant which depends on the nature of the medium and the explosion; f is 
the form of the emitted wave; and Cp is the velocity of the longitudinal waves. 

In [5] it was shown that a satisfactory approximation of experimental data on explosion 
waves can be obtained with the source function 

/ ( x )  = j _ e - . . ( l  ~ x § x'-' x 3 ) 
�9 ' 2 ' ~J B x  ~ , (1.2) 

where B is a constant which depends on the properties of the medium. 

The function f(x) satisfies the conditions 

!(u) .... ['(o) .= F(o) ~- !'~ (o) . o, /(~) ~_~ ~, 

which signify the vanishing of the potential, the displacement, the velocity, and the accel- 
eration on the wave front and the boundedness of f(x) at infinity. 
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2. Now suppose that the source (I,i), (1.2) acts in a half-space which has a bounded 
free surface (the coordinate system is cylindrical, r~0, z>10, the free surface coin- 
cides with the plane z = 0, and the source is placed at the point r = 0, z = h). 

The potentials of the displacement field in the half-space 9(r, z. t) and $(r, z, t) for 
this problem may be found in [6] (see also [2, 7, 8]): 

(f i r .  z. t) , % ( r ,  z , .  t) - -  :l J r .  z.,.. tl  q, (r.  z.> t) ,  

( ~ ( r , z , t )  . . . .  i ( t - - ~ , )  l, _:.: (r ~ z ~ ) l ~  . ~' , . , . . ~ z - - h .  z . , . ~ - z - k - h ,  

o o  

St~ gL (~) z.,a - -  ~,,t~: X (~) ,.., . . . .  ~,~ ,  

I .  ( , ,  ' %  (/,,) F (>,,;) - d/,,, 

(2 .1 )  

(2 .2 )  

r = 

4 (2 + ~2) 
6 2 _ _  4r ' 

g2 (~) = h~z ~- z~ - -  ~,t~, 

~ = 2 +  [ ~, cz- - - l , / lq - '7~[  0~, [3 = I / i +  [", Re,z>0,  R e ~ > 0 ,  if ~>0,  

y = Cs/Cp; c s is the velocity of the transverse waves; F(ky~) is the Laplace mapping of the 
source function f(t); Jo and J: are Bessel functions; I is the countour of integration in 
the inversion formula for the Laplace transform [9]. Unlike the reference mentioned, in 
formula (2.1) we distinguish explicitly the term ~o(r, Z2, t), which corresponds to the po- 
tential of an imaginary source, as a result of which the term %(r, z2, t) has no spatial sin- 
gularities. In (2.1), (2.2), and everywhere in what follows, we introduce the dimensionless 
variables and quantities 

t = ~ / t o ,  r = ~c~to,  z = ~ ,  h = ~ % t o ,  ~ = ~/~(cpto) ~, ~ = A / ( c p t o )  ~, 

where t he  t i l d e  i n d i c a t e s  d i m e n s i o n l e s s  q u a n t i t i e s .  

From (2 .1 )  and (2 .2 )  we can o b t a i n  f o r m u l a s  f o r  the  components  o f  the  s t r e s s e s ,  as  was 
done ,  f o r  example ,  i n  [3,  4 ] .  However,  t he  f o r m u l a s  o b t a i n e d  a r e  r a t h e r  cumbersome, and 
t h e i r  a n a l y s i s  r e q u i r e s  e x t e n s i v e  machine  c a l c u l a t i o n s .  E v i d e n t l y  an e x a c t  e l a s t i c  s o l u t i o n  
c o n t a i n s  many p r e c i s e  d e t a i l s  which a r e  a s s o c i a t e d  w i t h  the  s e l e c t e d  model  o f  t he  medium and 
do n o t  appea r  or  have o n l y  a s l i g h t  s i g n i f i c a n c e  i n  the  c a s e  o f  a r e a l  medium. I t  i s  de -  
s i r a b l e  to  s i m p l i f y  t he  s o l u t i o n  by s e t t i n g  a p a r t  i t s  p r i n c i p a l  p a r t .  I f  we c o n f i n e  our  a t -  
t e n t i o n  to  t he  q u e s t i o n  of  s p a l l i n g  d i s i n t e g r a t i o n  o f  s o i l s  o f  t he  r o c k  t y p e ,  t h i s  can be 
done by s t a r t i n g  from t h e  c h a r a c t e r i s t i c  s t r e n g t h  p r o p e r t i e s  o f  the  r o c k  and t h e  c r i t e r i a  f o r  
i t s  d i s i n t e g r a t i o n .  

3. One o f  t he  c h a r a c t e r i s t i c  p r o p e r t i e s  o f  r o c k s  i s  t h e i r  f i s s i b i l i t y .  The c r a c k s  i n  
t he  r o c k  form a t h r e e - d i m e n s i o n a l  ne twork  s e p a r a t i n g  t he  r o c k  i n t o  b l o c k s  [ 1 0 ] .  C o n s e q u e n t -  
l y ,  t he  s t r e n g t h  o f  r o c k s  depends  to  a g r e a t  e x t e n t  on t he  n a t u r e  of  t h e i r  s t r e s s e d  s t a t e :  
Rocks have  the  g r e a t e s t  s t r e n g t h  unde r  c o m p r e s s i o n  and the  l o w e s t  s t r e n g t h  under  t e n s i o n .  
For example ,  g r a n i t e s  a r e  c h a r a c t e r i z e d  by a p p r o x i m a t e l y  the  f o l l o w i n g  v a l u e s  o f  r e l a t i v e  
s t r e n g t h :  100 under  c o m p r e s s i o n ,  9 under  s h e a r ,  and 2 under  t e n s i o n  [ 1 1 ] .  For  media  w i t h  
d i f f e r e n t  v a l u e s  o f  t he  u l t i m a t e  s t r e n g t h  under  t e n s i o n  and under  c o m p r e s s i o n ,  t h e  s t r e n g t h  
c r i t e r i o n  has  the  form [12] 

2a~3 20~1) +C (%1 aas)~] 'I2 ~. t ,  (3.1) 

where 

o +, o-, T b are the ultimate strengths under tension, compression, and shear, respectively. 
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The condition (3.1) 
criterion. 

We introduce the notation: m~ ~- o+/o -, m~ -~ O+/rb, 

~" + e~ (~n + e~ + ~)" p = "~-'1 ( ~  + ~ § ~;~), 4 = ~ . .  + o ~  - 

In the new notation the disintegration criterion has the form 

3 ~ p M  = ~+, 

(if the equal sign applies) may be interpreted as a dSsintegration 

( 3 . 2 )  

For rocks, as mentioned earlier, m~i0 -~, m~2.10 -x , i.e., m~ and m~ are much less 
than unity. Taking account of this fact, we can write the criterion (3~ in the form 

[ ,  (  )1=o + p 2 ~ 0 m~ "f~ 

and take 

p = (i13)~+. ( 3 .4 )  

Thus, from the criterion (3.1) as applied to rocks it follows that a decisive role in 
their disintegration is played by omnidirectional tension. 

The condition (3.4) is an idealized condition for the disintegration of a rock. it 
means that the rock is characterized by infinite strength under compression and shear and a 
finite strength ~+ under simple tension. 

It should be noted that for a plane longitudinal stress wave in an elastic medium (when 
the Poisson coefficient v varies from 0 to ~/2) the ratio J2/9p 2 in (3.3) varies from 0 to 
i/3: 

4.  ~hen we u s e  t h e  d i s i n t e g r a t i o n  c r i t e r i o n  ( 3 . 4 )  f o r  a r o c k  i n  t h e  s p a ! l i n g  p r o b l e m ,  
we mus t  know t h e  e x p r e s s i o n  f o r  t h e  a v e r a g e  s t r e s s  a s  a f u n c t i o n  o f  t h e  c o o r d i n a t e s  and t i m e .  
For  t h i s ,  it: i s  s u f f i c i e n t  t o  know t h e  l o n g i t u d i n a l  p o t e n t i a l  ~(r, z, ~ a l o n e ,  s i n c e  

p ( r ,  z, t) = 3--  47202~ 
3 Ot 2" (4.1) 

Substituting into (4.1) the value of ~ from (2.1), we obtain 
oo 

p (r, z, t) =- 3 -- 4~ 2 I i" (t -- ,Ol) + "-}- "~ X (~) ? : k ~ F  (kT~) dk 

t z (4.2) 

= + 00 = (r' + 

Deforming the contour ~ into a new contour which encloses the branching lines drawn 
along the imaginary axis from the points ~ = "-+i to infinity and taking account of the resi- 
dues at the poles ~ ---- 0, ~ = +__i~, we can obtain the following representation of p- 

3_4?~[ ~ " ( t - - p : ) ,  S ( t - - 9 ~ ) ]  (4~ 
p =  Pa i Po-g Pl + P2, P~ -- 3 ~I ~ ~ ' 

P0--3--~V23 '--V 2~2" (__1§ ~ + f(,_~)]~ , 

3 47 z @ (e) j ?~) 1" 
P2 
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0,, t ~ ~ \  . ' 

0 f 2 ~ z: R 

Fig. 1 

t 1,'? ' 

3-~ 4'2' f l" (t -- x) f S (r, z,a, Tr',) Q ('.) d',d,, P,= ~. 
P2 i 

4?ab s 
r (~)  = ~ ,  0 ( 0 )  = a b d - -  (anq-v'2b~), 

a =  ]/l--?~-t~ "2, b =  ] / 1 - - ~  ~ d : : 2 - - 0  ~, 
S (r, p, q) ~- q (3AB2 -- A3) ~- p (3BA2 - -  B3) 

R3 

.~,.o, \ 2 / ' / /  (X~+Y~)L"* ' ,  A =  B =  - -  . 

X r 2 r p,,- ", y 1~;I 3i5~ 
= -:- - -  q- ,  =- 2pq ,  Q (~) t~ 4 -+- l~ia"~"' 

o, = V l  - g = V U  - 1 ,  t,  = 2 - r ' - ,  

= CR/Cs, c R is the Rayleigh wave velocity; here Pa is the sum of two waves of identical 
shape emitted by the true and imaginary sources, where the average stresses in the two waves 
have opposite signs. For example, if the wave from the true source is a compression wave, 
then the wave from the imaginary source is a tension wave. As y + 0, we find that Pa passes 
into the solution of an acoustic problem on an explosion in a liquid half-space; accordingly, 
Pa may be called the acoustic (quasiacoustic) term. 

The term po varies most slowly with respect to time; as t ~ =, we find that po § const 
(r, z, h), and therefore we may call it the quasistatic term. The term px is due to the res- 
idues at the poles (the integrand in (4.2)), which are the roots of the Rayleigh equation; 
p~ may be called the Rayleigh term, which describes the average stress in the Rayleigh sur- 
face wave. 

3-- 4v=f"( t- P=) ~ P~ is the average stress in the longitudinal body wave The expression 3 P2 

reflected from the free surface. The first term of this expression is the wave reflected 
from the free surface of what we might consider a liquid half-space, and p2 is the additive 
term due to the difference between an elastic solid and a liquid. 

The amplitude values of the individual terms in (4.3) depend on the coordinates of the 
point of observation and the depth of the source. Fixing the depth h of the source and let- 
ting the coordinate r tend to infinity, we can convince ourselves that the amplitudes of the 
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individual terms in (4.3) have the following orders of magnitude: 

p~ = 0(1 r~), Po .... O ( l l r D ,  p~ ~ O ( l / r  ~0, p~ = O(lirD. 

Consequently at long distances from the epicenter near the free surface the Rayleigh term 
p: will predominate. Conversely, at short distances from the epicenter and small depths of 
the explosion the biggest contribution to the average stress will be made by the quasistatic 

1 3 term po, which varies with distance according to a /P2 law. 

We can expect that at distances !h ~ 1'2 ~ I the principal part of p (where y~&0 ) 
will be the following: 

, , : . ,  1' (t  - ~,,,) , / ( t  - o~)  ( 4 . 4 )  ~ - - 4 ~ " ~  4Y2 I + - -i -- �9 

If we try to take account of all possible values of the parameter Y (0 ~ y ~.~ i/~f2), 
we find that the principal part of the average stress at short distances from the point of 
the explosion can be represented in the form 

( ( ] :~ _ ,~,:~ f" (~-~,~'~ f" (t -v2) ~v"- z ;  i ' ( t  - ~h) / ( t -  
,% ~ -_ -~,~ 1_ + s - - - i -  - " ( 4 . 5 )  

The linear dimensions of the region of possible disintegration of the medium when an ex- 
plosion takes place (on the scale we have selected) have values of the order of unity (in the 
case of a camouflet explosion the radius of the zone of radial cracks is a quantity approxi- 
mately equal to Cpto, while for an explosion in a half-space it is somewhat larger). 

Consequently, in the region of possible spalling disintegration of a rock the average 
stress can be represented by (4.4) or (4.5). 

Calculations made in accordance with the formulas (4.3) confirmed the above assertions 
with regard to the behavior of p (Fig. i, where the amplitudes of the individual terms of 
(4.3) are shown for h = 2, B = 0.240, and y = 0.6; curve 1 -- Pm, 2 -- Pom, 3 -- plm, 4 -- P2m). 

5. Let us find the boundaries of the region within which it is possible to have disin- 
tegration of the medium. In this region the following condition must be satisfied: 

o+ ) p ( r ,  
i l 

z , t ) ~ > ; ,  ( ! ~ , - -  5 . ( 5 . 1 )  

The equal sign in (5.1) corresponds to the boundary of the region of possible disinte- 
gration. 

To estimate the "strength" of the medium, p,, we use data on the dimensions of the dis- 
integration zones in camouflet explosions. In a camouflet explosion the average stress, in 

405 



�9 . . 

! ; 7  " '  

'I x 2 
o 5' 

. . . . . . .  t 

0 0,5 ~:O 

Fig. 3 

accordance with (i.i), (4.1), is described by the formula 

e 2 

p = p (R, t) 3 --  4%,- o r 3 - 4"~ 2/"  (t - -  R) 
== 3 d t  2 -~= - 3 R ' 

where R is the distance from the center of the explosion; f has the form R = R/cpto. 

The zone of radial cracks in a spherically symmetric explosion in rock begins at dis- 
tances of ~: ~ 2r c and ends at distances of R2 ~4r c from the center of the explosion (where 
r c is the radius of the camouflet cavity) [i, 13]. On the chosen scale of length these dis- 
tances will be R~ ~0.5 and R2~ 1.0, respectively. 

Since crack formation in rocks in the zone of radial cracks takes place as a result of 
tension, a knowledge of the limits R~ and R2 of this zone enables us to estimate the strength 
of the rock under tension when an explosion takes place. 

For the value of the disintegrating average stress we obtain the following limits: 

Pl -~- -- 3 -- 

where fm" is the largest value of the second derivative of the source function (1.2) (in the 
tension phase in the wave emitted by the explosion). If we take for granite a value of T = 
0.6 (and, in accordance with [5], B = 0.240), we can find the value fm"~ 0.38, which, tak- 
ing account of (5.2), yields 

p ~ 0 . 4  (R 1 =  0.5), p SN~0 .2  (R 2 =  1.0). ( 5 . 3 )  

If in (5.1) we use the value of p from (4.3) and the limits found in (5.3) for the 
"strength" of the granite, we can calculate the boundaries of the possible spalling disinte- 
gration in the case of an explosion in granite. 

The results of such calculations are shown in Fig. 2. The solid curves indicate the 
boundaries of possible disintegration when p, = 0.4, and the dashed curves indicate the 
boundaries for p, = 0.2 for different values of the source depth h, a) h = 1.5 b) 2.0. c) 
2.25, d) 3.0, e) 3.5. 

The common characteristic feature of the zones of possible spalling disintegration is 
their localization about the axis of symmetry and their elongation along this axis. The 
tensile stresses resulting from the presence of a free surface disintegrate the medium pref- 
erentially along the line of least resistance. 

This fact makes understandable the phenomenon of the formation a cave-in column of rock 
and a collapse funnel when an explosion takes place. For appropriate explosion depths, the 
rock situated above the camouflet cavity and disintegrated by the direct and reflected waves, 
under the action of gravity, gradually collapses into the camouflet cavity. The cavity may 
be said to be uplifted to the free surface, becoming a collapse funnel. 

In particular, it can be said that if the zones of spalling disintegration and camouflet 
disintegration do not overlap, the cave-in column will not emerge to the free surface and a 
collapse funnel cannot be formed. 
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6, We shall make use of the foregoing to obtain a formula relating the radius of the 
disintegration funnel at the free surface to the weight of the charge and depth of its place- 

men t, 

The edge of the disintegration funnel at the free surface of the medium is characterized 
by the fact that the amplitude Pm of the average stress on it in accordance with the disin- 
tegration criterion (5.1) must be equal to the "strength" of the medium: 

pro(r, O, h) = p , .  ( 6 . 1 )  

In  o r d e r  to  o b t a i n  t he  e x p l i c i t  e x p r e s s i o n  i n  ( 6 . 1 ) ,  we c a r r i e d  ou t  s t r e s s  c a l c u l a t i o n s  
a c c o r d i n g  to  t he  f o r m u l a s  ( 4 . 3 ) .  The r e s u l t s  a r e  shown i n  t h e  c o o r d i n a t e s  log  (H-~) ,  log  
( i  + n ~) in  F i g .  3, where  H = pm(r ,  0, h ) /Pm(0  , 0, h ) ,  n = r / h ,  Pm(0, 0, h) i s  t h e  a m p l i t u d e  
at the epicenter (B = 0,240, y = 0.6). It can be seen from Fig. 3 that the distributions of 
the function E along the free surface for different values of h are approximately the same 
[at point i) h = i; 2) h = 1.5; 3) h = 2; 4) h = 3; 5) h = 4]. 

In the interval 0<n~1.98 the results can be approximated very well by a straight 
line: 

lg (H -1) = a lg (i + n2), a ~ 3.76. (6~ 

When n~1.28, the points corresponding to different values of h lie on different curves, 
and the approximation of the function log (E-~) in this interval in the form of a single uni- 
fied curve is incorrect. These facts indicate that as n changes, there is a change in the 
behavior of the function E. 

The calculations for the individual terms in (4.3) show that when 0 < n < 1.28, the 
main contribution to the value of the amplitude of the average tension is made by the quasi- 
static term Pom, and when n ~1.28, it is mad e by the Rayleigh term P:m. In the neighbor- 
hood of the value n~1.28 the regime of motion of the free surface is altered. For small 
values of n the largest average tension is contributed by the body waves, and for large val- 
ues (n > 1.28) by the Rayleigh surface wave (see Fig. i). The amplitude of the latter wave 
depends not only on n but also on h, i.e., the Rayleigh waves for different source depths are 
not similar to each other. 

The results of the calculation of the amplitude at the epicenter showed that the value 
Pm(O, 0, h) can be satisfactorily approximated by a power function: 

pro(O, O, ~ = A/h ~, ( 6 . 3 )  

where  m ~ 2 . 8 0 ;  A ~ 4 . 5 6  ( 0 . 5 < h < 5 . 0 ) .  

From ( 6 . 1 ) - ( 6 . 3 )  we f i n d  

A/h "~ (i + n2) ~ = p, .  ( 6 . 4 )  

Returning to the dimensional variables H = Cptoh, R = Cptor, we rewrite the condition (6.4) 
in the form 

%~ = (P,/A)I/~(I + n~)a/~H. ( 6 . 5 )  

The characteristic length cpto is proportional to the radius of the camouflet cavity: 
Cpto ~r c. The radius of the cavity can be estimated by means of the formula [14] 

rc = const(W1/3/H1/4),whereWis ~e weightof ~echa~e .  ( 6 . 6 )  

Making use  o f  ( 6 . 6 ) ,  we f i n d  from (6 .5 )  t h a t  

W = const (p,/xpoC~)(i .2_ n2) 3~/~ HlS / ,~  const (p,/• (i  + n2) a H 15/'. ( 6 . 7 )  

Formula (6.7) yields the desired connection between the weight of the charge, the depth 
of its placement, the strength of the medium, and the radius of the disintegration funnel for 
values of 0~n-~I.28. For larger values of n this connection is much more complicated. 

In ejection explosions the radius of the ejection funnel practically coincides with the 
radius of the disintegration funnel, and therefore formula (6~ can be used for calculating 
the ejection funnel. The ratio n = R/H, where R is the radius of the ejection funnel, is 
called the ejection factor [i]. If in formula (6.7) we set H = R/n, we obtain 

IV = const (p,/• ((t q- n2)4/n-~5/4) R ~5/4. (6 .8 )  
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From (6.8) we conclude that there exists an optimal depth of placement, H = H,. When 
the explosion takes place at this depth, the weight of charge required to produce a funnel 
of a given radius is a minimum. Differentiating (6.8) with respect to n, setting the deriva- 
tive equal to zero, and solving the resulting equation for n, we find the value of the opti- 
mum ejection factor 

(|5~ 1/2 
n ,  = \[71 ~ 0 . 9 4 .  

Experiments with large explosions show that the optimal value of the ejection factor 
depends weakly on the type of rock involved and is close to unity [13, 15]: 

n , ~ 0 . 8 - - 1 . 2 .  

If we disregard the effect of the depth of placement upon the length of the elastic 
wave emitted by the explosion (which is permissible for small explosions), then the charac- 
teristic length Cpto is proportional to WI/3. ~ormula (6.5) then yields 

W = const (P,/• (i -I- n~) ' H3, 

i.e., the weight of charge required to produce an ejection funnel is proportional to the cube 
of the line of least resistance. 

The author wishes to express his gratitude to A. I. Shakhov, who carried out the calcu- 
lations. 
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